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“Smart” Materials and Potential Applications

Active materials exhibit a dramatic, controllable phase transformation

Shape Memory Alloys (SMA):

• Thermal mechanical work

• First discovered in 1932 by A. 
Olander

• Came to forefront of materials 
research in 1960s [W.J. Buehler]

• Potential applications include 
vibration damping, biomedical 
applications, nanomachinery

Other active materials with similar phase transformation behavior include 
Ferromagnets, Piezoelectrics.

SMA Arterial Stent
(from smet.tomsk.ru)

→
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First-Order Martensitic Phase Transformation

Materials change elasticity, crystal structure according to temperature and 
stress:

Shape Memory Effect
(adapted from J. Ryhanen)

Austenite:
High Symmetry (cubic)
Single Structure
Stiff (~ Titanium)

Martensite:
Low Symmetry (e.g. tetragonal)
Multiple Structures
Ductile (~ Soft Pewter)
Deformations Move Twinning Planes
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General Continuum-Thermodynamic Model

The continuum-level thermodynamic description may be given by the 
following nonlinear system

where (x,t) ∈ [0,L]×R+.

The heart of this physical description lies in the construction of the nonlinear 
free-energy function Ψ(γ,θ).



CASC

The Helmholtz Free Energy

The material physics is described through an expanded form of the 
Landau-Devonshire potential [Falk 1980; Niezgodka & Sprekels 1988]:

The strain energy               (at right) provides the phase transformation 
(global minima) and satisfies all measurable material constants.
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Dealing with the Mathematical Model

Look for weak solutions u,v,θ to the nonlinear system:

Discretizations:
� Spatial discretization uses piecewise affine finite elements 

— due to limited regularity of expected weak solutions

� Temporal discretization uses a two-level, fully-implicit, continuous-time 
Galerkin method 

— discretely conservative, 
— uniform treatment of space & time.
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Dealing with the Model (continued)

The discretized problem results in a fully coupled, finite dimensional, non-
convex, root finding problem,

The solver is based on an inexact Newton-Krylov approach:

� Inexactness parameter  [Nocedal & Wright]

� Newton system solution uses preconditioned, restarted GMRES.

� Preconditioning uses an incomplete LU factorization of a sparse 
approximate Jacobian  [SPARSKIT2].

� Required globalization combines a backtracking line-search with a 
viscosity-based continuation method (to be discussed further).
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Theoretical Difficulty at the Phase Transition

Nonconvexity of Ψ requires large α:

� Existence and uniqueness theory only 
valid for sufficiently large viscosities 
[Niezgodka & Sprekels 1988,  
Hoffmann & Showalter 2000]

Small α result in inflection points 
in the root-finding surface

Desire “small viscosity” solutions:

� Physical experiments observe little or no viscous effects       
[Seelecke 2002, Seelecke & Muller 2003]

� Linear viscosities unphysical (violate material frame indifference) 
[Friesecke & Dolzmann 1997, Antman 1998, Antman & Seidman 2003]
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Viscosity-Based Continuation

Remove instabilities at phase transition through changing viscosity level:
1. Keep a low/zero until beginning of phase transition (tracked using line-search 

step length)
2. Increase a to compute initial perturbed nonlinear solution
3. Progressively decrease a to pull perturbed solution over energy barrier to low 

viscosity solution.  Attempted the following variations:
� Begin continuation iterations with previous successful solution
� Begin with linearly extrapolated solution from two previous successes
� Perform multiple passes using coarser continuation loop.

Similar to other methods for nonlinear problems:
— Method of Vanishing Viscosity [Hopf 1950, Lax 1954].
— Regularization methods for ill-posed inverse problems.
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Results of the Viscous Continuation

Much faster than other global methods (e.g. Simulated Annealing):
� “Normal” time steps require (~3 Newton steps)*(~7 GMRES its).
� Phase transitions require ~5 viscosity passes.

Benefits:

� Inflated viscosity only necessary 
during transition.

� Viscous effects on overall system 
are measurable and small.

� Continuation dramatically decreases 
the viscous perturbation required.

� Use of natural variable ensures 
energy conservation.
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Computations and Visualization

Phase plots:
yellow = austenite

red/blue = martensite +/-

Displacement is plotted for clarity:
positive = elongation

negative = contraction

50  mm
2  ms
5  µm
1  µs
6.45e+3  kg/m3

10  W/(K m) 
322  J/(K kg)
75  GPa
28  Gpa
320  K
335  K
350  K

L
T
∆x
∆t
ρ0

κ
cp

EA

EM

θM

θM

θA

ValueConstant

NiTi simulation constants

1-D deformation constitutes elongation 
and contraction from reference state
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Thermally-Induced Transformations

Thermal transformations are induced using a constant heat supply r(x,t):

Martensite to Austenite:  r = 40 J/s Austenite to Martensite:  r = -40 J/s

Nonlinear latent heat effects are measured by enthalpy jumps.  
The model successfully predicts these (within a factor of 1.5):
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Computed Hysteresis

Hysteresis loop computed using thermally-induced transformations:

Ideal Hysteresis Loop Computed Hysteresis Loop

� Sharp corners of hysteresis loop likely due to single-crystal model
� Negative tilt due to sharp corners and latent heat of transformation
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Stress-Induced Transformation

Stress transformations are induced using the body force term b(t):

Simulation Remarks:
� Begin with relaxed austenite, just 

below θA

� b(t) first extends, then compresses 
as seen at the right

Simulation Movies
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Vibration Experimental Setup

We envision a mechanism for thermally-controlled active damping of vibrations:

To this end, we use a vibrational input force and a localized temperature control:

Localized Temperature Control
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Base Case: No Thermal Control

Simulation Remarks:
� Begin with fully-twinned martensite
� Initial vibrational shock
� Peaks correspond to total 

vibrational energy
� Continues vibrating with little 

attenuation

Simulation Movies
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Partially-Active Vibration Control

Simulation Movies

Simulation Remarks:
� Begin with fully-twinned martensite
� Initial vibrational shock
� Localized heating control

� Near-full damping at onset of 
localized phase transformation

10 2
( , ) 10 sin 2 J/sx tr x t π  
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Benefits and Limitations of this Approach

Benefits of the modeling and simulation methods include:
� Clean, predictive approach to thermodyanmic modeling of phase transitions
� Successfully describes both phases of SMA, martensitic phase 

transformation, and material properties
� Iterative solution method based on reliable and scalable components

Limitations include:
� All of the material physics must be encoded in the Helmholtz free energy
� Single-crystal models cannot account for polycrystalline structure and 

material defects found in production alloys
� One space dimension loses some physics of the full material
� ILU preconditioner does not scale with problem size (for future higher-

dimensional modeling)
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Directions for Future Research

� Consider alternative continuation methods

— Viscous continuation in spatially localized regions

— Adaptive time-stepping around moments of transition

� Construct preconditioner based on standard linearized SMA models

� Extend modeling system to thin films (currently underway) and solids

� Examine optimal thermal controls for active damping with SMA

� Examine modeling approaches based on a stochastic description of the free 
energy (polycrystalline materials, defects)
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Viscosity-Based Continuation

Remove instabilities at phase transition through changing viscosity level:
1. Keep a low/zero until beginning of phase transition (tracked using line-search 

step length)
2. Increase a to compute initial perturbed nonlinear solution
3. Progressively decrease a to pull perturbed solution over energy barrier to low 

viscosity solution.  Attempted the following variations:
� Begin continuation iterations with previous successful solution
� Begin with linearly extrapolated solution from two previous successes
� Perform multiple passes using coarser continuation loop.

Similar to other methods for nonlinear problems:
— Method of Vanishing Viscosity [Hopf 1950, Lax 1954].
— Regularization methods for ill-posed inverse problems.


